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SUMMARY

The linearized potential theory for supersonic flow about slender
bodies of revolution undergoing harmonic oscillations is presented.
The 1ift per unit length and the 1ift and moment coefficlents on an
arbitrary shape are expanded to the fifth power of the frequency. The
theory is applied to a rigid cone undergoing harmonic translation and
pitching motions. The results are compared with slender-body theory
for the oscillating case and with Van Dyke's second-order theory for
the steady case.

INTRODUCTION

The problem of determining the aerodynamic forces on bodies of
revolution has been of considerable theoretical and experimental inter-
est for some time. Until recently, the aerodynamics of 1lifting sur-
faces have been of more practical importance since the forces developed
on an aircraft fuselage are usually small in comparison to those devel-
oped on wing surfaces. However, many of the vehicles designed over the
past few years employ either very small-aspect-ratio 1ifting surfaces
or none at all. The predominant air forces on such configurations are
associated with the shape and flexibility of the body.

There are a number of theoretical methods for predicting the forces
on bodies at supersonic speeds; the Mach nunber range and body shapes
to which these methods are applicable vary conslderably. For bodies
fixed in the alrstream, such approaches as linearized potential theory
(refs. 1 and 2), second-order slender-body theory (refs. 3 and 4),
shock-expansion theory (ref. 5), the tangent-cone approximation (ref. 6),
Newtonian theory (refs. 6 and T7), methods based upon the use of complex
variables (ref. 8), and the piston-theory approximation (ref. 9) are
available. In unsteady flow the choice of methods is somewhat more
limited. Among the techniques applicable to unsteady problems are the



Munk-Jones momentum theory (ref. 10), linearized potential theory
(refs. 11 and 12), extended shock-expansion theory and a variational

procedure (ref. 13), and various quasi-steady theories based upon steady-

state results.

Some insight into the relative merits of the various methods appli-
cable to unsteady flow has been provided by a recent experimental and
analytical investigation of flutter of conical shells (ref. 14). 1In
this study flutter calculations were made over a wide Mach number range
and compared with experimental results. Potential theory, momentum
theory, Newtonian theory, and several quasi-steady methods were used in
making the calculations. The potential-theory aerodynamics employed
in this investigation are derived herein.

The present paper is an extension of the previous work of refer-
ence 11 in which the velocity potential was expanded to the first power
of the frequency. Another approach to calculating potential-theory
aerodynamics on oscillating slender bodies was recently set forth 1in
reference 12, which contains a description of a method for computing
the pressures acting on the body by evaluating the potential and sev-
eral of its derivatives by numerical processes. In the present work,
the perturbation potential for an arbitrary slender body of revolution
has been analytically expanded to the fifth power of the frequency.
Expressions are given for the 1lift per unit length and the 1ift and
moment coefficlents. The coefficients of the povers of the frequency
are obtained in the form of integrals involving the body shape and
downwash. These general expressions are then evaluated for a rigid
cone undergoing harmonic translation and pitching oscillations. Cer-
tain functions of Mach number and cone semiapex angle appearing in the
expressions for the forces are tabulated. The results are compared
with slender-body theory for the osclllating case and with Van Dyke's
second-order theory for the steady case.

SYMBOLS
8o free-stream speed of sound
Ai(n) functions of B tan ® and M associated with 1ift

per unit length on a cone (egs. (Al))

A(n)(x) functions associated with 1lift per unit length on an
arbitrary shape (egs. (1la) to (11f))

b body length
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U0 = B

total-11ft coefficient (egs. (13) and (14))

total-moment coefficient (egs. (13) and (14))

source or doublet strength

amplitude of translation

reduced frequency, %8

Voo
1lift per unit length

total 1ift, (eq. (10a)) (positive down)

components of total-1ift coefficient derived from
potential theory (eq. (13))

components of total-1lift coefficient derived from
slender-body theory (eq. (1k4))

free-stream Mach number

total moment about X = X, (eq. (10b)) (positive,

nose up)

components of total-moment coefficlent derived from
potential theory (eq. (13))

components of total-moment coefficient derived from
slender-body theory (eq. (1k))

perturbation pressure acting normal to body surface

functions of B tan & assoclated with forces on a cone
(eqs. (A2) and (A3))

ol

free-stream dynamic pressure,

body radius



R polar radius of deforming body
s(x) body cross-sectional area, nR<(x)
2, 2
S(b) base area of cone, wb“tan<d
t time
Us free-stream velocity
X0 distance from nose to pitch axis
X,
%0 = 0
XQ = 5
X, r,0 a system of cylindrical coordinates with X-axis in

direction of free stream and with origin located at
mean position of body nose

Z(x,t) downward displacement of body center line for arbitrary
time-dependent motion

Z(x) amplitude of Z(x,t) for harmonic motion )

IIn(x,r) integrals assoclated with the expanded velocity potential

of an arbitrary body (egs. (8a) to (8f))

IIn(X) = [iIn(x’ri]r=R(x)

[% H“(X’rﬂ r=R(x)

1]

IT, (x)

IIIl,IIIQ,III5 integrals associated with velocity potential of an
arbitrary body (egs. (5a), (5b), and (5¢))

a angle of attack, or amplitude of pitch

B =M -1

o cone semiapex angle

A(x) function associated with perturbation pressure (eq. (9)) =
W

N0 = H



N0 -

Poo free-stream density
(x,1,8,t) perturbation velocity potential for an arbitrary
time-dependent motion
Q(x,r,e) amplitude of perturbation potential for harmonic
motion
@l(x,r) distribution of sources as defined in equation ()
v(x,r) function associated with velocity potential (eq. (7))
w frequency of oscillation
ANATYSIS

The differential equation for the perturbation velocity potential
is given and the solution appropriate to the 1ifting case 1s obtalned.
The solution involves a distribution function which is determined by
applying the boundary condition of tangential velocity at the body sur-
face. The potential, surface pressures, and 1ift per unit length are
then expanded to the fifth power of the frequency. A more detailled
derivation of the fundamental solution of the governing differential
equation may be found in references 11 and 12.

The Governing Equation and the Fundamental Solution

The perturbation veloclty potential é(x,r,e,t) for the unsteady
linearized supersonic flow about a body of revolution must satisfy the
partial differential equation

o5 Fo_ 1% _ 136,139

1
2 ord T or 232 42 4°

B

where x,r,0 1is a system of cylindrical cocordinates moving with the
flight velocity U, in the negative x direction (see fig. 1(a)), &y
is the free-stream speed of sound, M is the free-stream Mach number,
and B2 =M° - 1. For harmonic motion, o(x,r,0,t) = o(x,r,0)el®t and
the governing differential equation becomes

- —— m  omm  maw— E m—— = e

32§2E Po 13 _ 1% “2q>+21a@%§=0 (1)



In the linearized problem the perturbation potential is the sum of
two types of potentials: a symmetric potential associated with body
thickness which gives rise to no resultant 1ift or moment, and an anti-
symmetric potential associated with angle of attack, camber, and time-
dependent motions which is used to determine total 1ift and moment. The
remainder of this paper is concerned with the antisymmetric type of poten-
tial insofar as it applies to harmonic motions.

By direct substitution it may be verified that equation (1) is
satisfied by the expression

aq)l(x)r>

r

(2)

p(x,r,0) = cos 0

where @l(x,r) is a solution of the equation

2 o
2 0% %9, | Oy w? My 1
s R R W R RN A (3)
axe ar2 T or %2 1 8, Ox

The form of the potential given in equation (2) is antisymmetric with
respect to the plane 6 = tg, the X,y plane, and is therefore appropri-

ate for determining lifting forces.

The solution of equation (3) corresponding to the potential @s of

a moving point source of outgoing waves with frequency w, is known to
be

1 e_iKchos<K\fx2 _ B2r2)

q) = e e—
S on Va2 _ p2r2

in which «k = E%}—n The potential at a field point (x,r) resulting
B

from a distribution of such sources along the X-axis of local strength

f(x)dx is then

0,(0) = - 1 x-pr ?(g)e-mc(x-g)cos(n \/(x - )2 . 52r2>

d¢ L
Yo Vix - £)2 - p2r2 "

This potential is also a solution of equation (3). The upper limit of
the integral indicates that only that portion of the line of sources

IO
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within the upstream Mach cone with vertex at point Xx,r 1is taken into
account.

Equations (2) and (4) will be used to determine the potential and
forces on a lifting body of revolution. It is convenient to change
from the variable & to the variable ¢ Dby the substitution,

x - £ = pr cosh {, so that

-1
cosh -B!-
Tr
¢l(x,r) =- ] £(x - Br cosh {)exp(-iMkpr cosh t)cos(kpr sinh §)atf
0
where f(x) =-§; F(x). The differentiation indicated in equation (2),
T

which converts the source distribution into a doublet distribution, may
now be carried out yielding the desired form of the potential

o(x,r,8) = B cos B(IMeITI] + kITIp + III3) (5)
where
-1y
cosh —
I, = f pr £(x - pr cosh t)exp(-iMkpr cosh t)cos(kpr sinh t)cosh ¢ dt (58)
0
cosh-lf—
I1I, = f pr f(x - pr cosh t )exp(~iMepr cosh t)sin(kpr sinh t) sinh § d¢ (5b)
0
-1
cosh _x;
11, = f B £'(x - pr cosh t )exp( -iMxpr cosh t)cos(kpr sinh t) cosh £ df (5¢)
0

and the prime denotes differentiation with respect to the argument.
(In this and one further differentiation of q)l(x,r) to follow it is



assumed that f(0) = £'(0) = 0. This assumption is consistent with the
fact that, as will be shown subsequently, f(x) 1is proportional to

R7(x). )

The Determination of f£(x) From the Boundary Condition

The principal boundary condition to be satisfied is the requirement
that the component of the fluid velocity normal to the body surface must
vanish; that is, the flow must be tangent to the surface. Consider &
slender body undergoing small time-dependent displacements asbout its
equilibrium position. The shape of this body may be described as the
superposition of a symmetric body of revolution, with local radius R(x),
about a mean camber line or center line which 1is undergoing small time-
dependent displacements about its equilibrium position. See the following
sketch:

R(x)
—‘/,Camber line

* T TEE::::I:::::>*ﬁ—X * = N [— X
\\[ﬂmﬂ

J Body thickness ¢ Time~dependent motion
Z Z Z

Sketch 1

Thus, the deformation at any time may be considered as resulting from a
vertical translation, with no rotation, of each vertical cross section
of the body of revolution. Let Z(x,t) be the downward displacement

of the center line of the body from the X-axis, and let R be the polar
radius of the deforming body. See figure 1(b) and sketch 1. Applying
the law of cosines to the triangle shown in figure 1(b) gives the fol-
lowing relation:

Rg(x) =72 + R2 + 2RZ cos 8

Solving for R and discarding the negative root results in

R = VRQ - nginee - Z cos 8

N0
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Approximating for small values of 2 gives
R = R(x) - Z(x,t) cos 6

The linearized form of the boundary condition then requires the
radial velocity on the mean body surface, r = R(x), to be equal to
the expression, U, %B + %%, where U, 1s the free-stream velocity.
>'e
As 1in the case of the potential, the boundary condition may also be con-
sidered in two parts: one involving R(x) assoclated with the thick-
ness distribution, which 1s of no concern here, and the other involving

Z(x,t) assoclated with the displacement. This latter part of the bound-
ary condition tekes the form

lim = -COS G(Uw%+%>

r—>R(x)

Y&

For a body undergoing harmonic motions, let Z(x,t) = Z(x)eiwt. The
boundary condition then becomes

1m 2 o _cos e[um () | 4 Z(x‘).J
r-R(x) or ox

The left-hand side of this expression can be evaluated by using equa-
tions (5). Carrying out the indicated differentiation, restoring the
varisble & Dby the substitution, x - & = Br cosh £, and approximating
the integrals obtained for small values of r gives

1im R _ -f(x)228 6

r »R(x) Or R2(x)

whence

£(x) = %gl - Rg(x)[Um a_gf‘_) + 1o z(x_)] (6)
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Expansion of the Potential and the Forces to the Fifth Power
of the Frequency

Expanding the integrands of equations (5a), (5b), and (5¢) in

powers of k and combining according to equation (5) results in the

following expression to the fifth power in k:

o(x,r,0) = B cos 8 ¥(x,r)

where
v(x,r) = IIo(x, ) + iMe II)(x,7) + % k2pr TI,(x,T)
B} %? S(pr)? TI5(x,7) - & «*(pr)> 11,(x,7)
+ B O(pr)" 115(x7)
and
cosh X
IIg(x,r) = Jf BT p1(x - Br cosh )cosh ¢ at
0
cosh™ %
II.(x,r) = -pr Br £(x
1% - Br cosh t)dt
0
cosh_léi
IIx(x,r) = -BrM° /‘ T £1(x - Br cosh {)cosh ¢ dt

Y0

-1
cosh ~=-

+ (Mz - l) Jf Br f(x - Br cosh ¢)dg
0

(7)

(8)

(8a)

(8b)

(8c)

\D\O
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cosh-l-—
IIB(x,r) = -BrM2 f T f'(x - Br cosh t)d¢
0
cosh =
+ (M2 - 3) [ Br £(x - Br cosh €)cosh t ac  (8a)
J
0

L cosh ~X-
IIh(x,r) = -BrM f BT £1(x - Br cosh t)cosh ¢ at
0

-1
+ (M)* + 5) j;COSh Ex; f(x - Br cosh {)d¢

-1
cosh =%

+ (M‘u - 6M° - 3) f pr f(x - Br cosh {)cosh?t 4t
° (8e)

-1
cosh —
IIs(x,r) = --BrMJ+ f Br £f'(x - Br cosh {)dt
0

cosh —
+ (Ml‘L + 15) f Br f(x - Br cosh {)cosh ¢ df
0

cosh'l-Big_-
+ (M“L - 10M° - 15) f f(x - Br cosh §)cosh3§ at
© (8f)

It may be noted that each of the equations (8a) to (8f), 1s a solution
of equation (3).



12

The perturbation pressure acting normal to any point of the body
surface 1s

Using equation (7) glves
p = -p,UuB cos 6 A(x) (9)

vwhere

and the differentiation with respect to x 1is to be carried out before
the substitution, r = R(x), is made. The lifting component of this
pressure is p cos 8; hence, the 1ift per unit length 1(x) 1s

pLd

R(x) p cos 6 d8
-7t

1(x)

~1p, UooP R(x) A(x)

The total 1ift L and the total moment MxO about x = x5 are then

b b
L=f 1(x) ax -ﬂponoB\_/:) R(x) A(x) ax (10a)

0

b
Meg = A (x - xo)l(x) dx

b
~7tPeUooB j; (x - xo) R(x) A(x) ax

(10v)

VIO
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With the aid of equation (8) in which k 1is now replaced by

L M na equations (8a) to (8f), the expression for A(x) may be

Up g2
written as

Alx) = A0(x) + 1 I_JU_)_A(l)(x) + %(U£>2A(2)(x) ) %(£>3A(3)(x)

oo 0 [+9]

h (%
_ E}E(ﬁ A ﬁ(ﬁ)%m(x) (11)
where
A (x) = 11'(x) (11a)
A(l)(x) = B_IQE{Z le'(x) + g2 IIO(x)] (11v)
2
@ - (}?2) [;3 R(x) I1,'(x) - 28° IIl(x):] (1c)

a3)(x) - 3—12@‘5)2 B R(x)[Mgﬁ R(x) 113'(;:) - 32 IIe(x)] (114)

L ~ .
A(l*)(x) = (é’%) Bs R(x)]2 B R(x) IT, (x) - hse- 115(x):' (11e)

L r '
a9y = Flé@%) E R(x):]3:423 R(x) II, (x) - 58° IIu(x)] (11£)

and
II_(x) = [_IIn(x,r)J 1, '(x) = [-55’; IIn(x,rﬂ

r=R(x) r=R(x)
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The integrals, II,(x) and IIn'(x), appearing in equations (1la)

to (11f) must be evaluated for each particular body shape and deformation
under consideration. If the displacement of the center line and the
body radius can be represented by polynomlals, the evaluation of these
integrals in closed form is straightforward but tedious. The results
obtained for IIn(x) and IIn'(x) involve expressions of the form

Vx2 - B2 R°(x) and cosh'lE?%i—j-. Thus, for simple body shapes and
x

deformations, analytical procedures may be used to evaluate the 1lift
and moment from equations (10).

Slender-Body Aerodynamics

A considerable simplification of the above results may be obtained
by introducing the so-called “"slender-body" approximation; that is, for
smooth thin bodies the pressures acting on the body surface are essen-
tially the same as those predicted on the X-axis. The expression for the
11ft per unit length on an arbitrary slender body will now be obtained as
a limiting case of the equations developed previously. This result is
subsequently used to evaluate the 1lift and moment coefficients on slender
cones for comparison with the expansion procedure.

By making the substitution, Br cosh { = x - ¢, in equations (5a),
(5b), and (5c) and approximating the three integrals for small values
of r, the potential becomes

9(x,1,0) = 2222 £(x)

which is now independent of the Mach number. As before,

f(x) = RE(X)[U°° égifl + 1w Z(xE]
ox

The pertubation pressure acting normal to the body surface is

_ _, cos® of (x)
p = pm R(X) Uoo ax + 1w f(X)]

O



\\o -

15

and the 1ift per unit length 1s

b1
1) = RG0) [ poos s @ = -e,rq{ifl(;‘) [féx)]}

For a body at a fixed angle of attack, with w = O, and with
7Z(x) = ax, the following well-known results of slender-body theory are
obtained:

das
= -2aq =
l(x) dx

b
L= A 1(x) dx = -2aq S(b) (12a)

5 - /;b (x - xo)u(x) ax = -zmqb[(l - %o)s(b) - %] (12b)

where 8(x) == R2(x) is the cross-sectional area, X = 2?, and V

1s the volume of the body. A closed body, s(b) = 0, therefore develops
no total 1ift, only a moment which tends to increase the angle of attack.

APPLICATION TO A CONE AND DISCUSSION

The expressions for the 1ift and moment developed previously for
an arbitrary body of revolution have been evaluated to the fifth power
of the frequency for a rigid cone undergoing harmonic pitch and trans-
lation. The final results are given in this section; further details
in the derivation of the expressions presented here are given in the
appendix. The corresponding expressions obtained from equations (12)
have also been evaluated for the cone and are presented for comparison
with the expansion procedure.

For a rigid body undergoing harmonic translation and pitch, the
amplitude of the motion is 2Z(x) = h + a(x - xo), see figure 2, where

h and o are the amplitudes of translation and pitch, respectively,
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and Xy is the distance of the pitch axis from the nose. In the fol-

lowing application, h 1is assumed positive down and a 1is positive
when the nose is up. With these conventions, a positive 1lift acts
downward and a positive moment acts nose upward.

Let the radius of the cone be R(x) = x tan &, where & is the
semiapex angle, and let b be the length of the cone. Denote the base

area of the cone, nbetaneﬁ, by S(b). The 1ift and moment coefficients
are found to be

N
cp = " g(b) = -4p tan 5[(Ll + ikL2>% + (L3 + 1kLu)o} > -
Cy, = E;is[%ﬁ = -4 tan & [:(Ml + 1kM2)% + (M5 + mflu)oﬂ )

where q 1s the free-stream dynamic pressure, % pwUmg, k = %#—, and

©

y (1) o g (3)y
-3 Ay KT+ ] Ag k (13a)
Ly = a0 4 a8Phe 2 AR (130)
(0) (2) (1) - (1)
Ly = 5 49 [i(‘\o - & >+'5on0 K
L -
- [%(A(() ) - 2A§5)) + % xOA.(()B?]kh (13c)

=%(2Agl>+A§°> 0)] [15 ) - )+ &éﬂke

(5) (4) (&)
[1%‘5(“*0 104, )*S oo]k (134)

\NW\O
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Xo\[ (&) (3) - kxg\ (3)
<§% - ??>(AO - on) > + 2xo<§ - 129>A0 K" (13g)

3 B - ) - - 7
(

X (5) (1) - Xo\, (%)
5 Sl af - BT o

The quantities, Aéo),Aél), .. Aéi) and A§O),A§l), voe . A§5),
are functions of Mach number and the product, B tan 5. Tables I to V
present values for various cone angles and Mach numbers. The calcula-
tions were carried out on an IBM 650 electronic data processing machine
to eight significant figures. The values in the tables have been arbi-
trarily limited to six decimal places. The expressions from which

(n)

Ay may be evaluated are given in the appendix as equations (Al), (A2),
and (A3).

For a cone undergoing rigid translation and pitch, slender-body
theory (eqs. 12) gives
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N

where

—_ 2 —
MQ:S_XO
m _(1 X le,/ioe_-ﬁJr;)
5‘3'?) \3 "7 *5

M, = (1 - 26)2

(1%)

(1k4a)

(1kb)

(1kc)

(144)

(1ke)

(14f)

(1kg)

(14n)

These results may also be obtained from equations (13) by using the

following limiting forms for small 5:

o 1 ) k
g ) ) B tin 5 é ) ~ 2B %an 3} g ) - éj) - g ) B 85)
0 2 i

A§ ) = 5 t5 5 Agl) = 5 L 5 A§ ) = A§3) = Ag ) = §5)

=0

=0

\IN\O 4
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Figure 3 shows the ratios, B tand Ln/fn and B tan & M, ﬁﬁ, plotted

0 -
against Mach number. These calculations are for & = 7% s Xg = %? and
the two values of k, 0.05 and 0.10. It should be remembered that fb
and ﬁh are independent of Mach number and are therefore constant.

The figures show that although Ly, L3, My, and M5 depend upon Mach

number, the variation is small and the slender-body approximation for
these quantities appears to be sufficiently accurate over a fairly wide
Mach number range. On the other hand, L, Iy, M;, and M vary

rapidly with Mach number and differ considerably from the corresponding
expressions obtained from the slender-body approximation.

It should be pointed out that the elght ratios plotted in figure 3
tend to unity as ® — 0° but not as M- 1. This behavior does not
appear to be a limitation of the expansion procedure alone. The theory
bresks down at very low supersonic Mach numbers since the potential
(eq. (4)) becomes meaningless as M — 1. For cones, it can be shown that
the expansion of the integrands of the integrals in equations (3a), (5b),

and (5c) to terms of the order k? 1is reliable for ﬁé < %. Therefore,
B

the lower limit of the Mach number range for which the theory is appli-

cable is M = 1 + 2k.

The upper limit of the range of Mach numbers and cone angles to
which the results obtained for the unsteady case are likely to be appli-
cable can be determined by considering the results for the steady case.

n
In particular, it may be pointed out that Ag )—+0 as P tan ® -1 soO

that the 1ift and the moment vanish. This is easily seen in the steady
case, k = 0, for which the 1lift and moment coefficlents given in equa-
tions (13) reduce to

cp, = -ea,\ll - (B tan 5)°

Om_ = -2a<% - 20)\[- (B tan 5)2

(15)
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Thls behavior 1s readily explained on the basis of the mathematical
solution of the problem by recalling that the only portion of the doub-
let distribution along the X-axis (egs. (5)) which influences a point,
X,x tan B, on the cone surface lies within the upstream Mach cone with

vertex at point x,x tan & and semiapex angle, tan™t %. When

B tan ® = 1, the Mach cone and the conical body are tangent (along a
ray passing through the vertex of each), and the effect of the doublet
line has vanished. From a physical point of view, linear theory is
restricted to Mach numbers for which the body lies well within the
downstream Mach cone attached to the nose. This condition is obviously
violated for B tan ® = 1. It should not be inferred, however, that
the 11ft and moment for all body shapes decrease with increasing Mach
number. For example, the present theory predicts an increase in 1ift
with increasing Mach number on a semiparabolic body. (See refs. 11

and 12.)

Figure 4 also shows a comparison of the lift-curve slope of an

o
inclined cone with & = T% as predicted by the present theory

(egs. (15)), slender-body theory (eq. (14)) with k = O, and Van Dyke's
second-order theory (ref. 3). Experimental measurements of forces on
cones in steady flow (refs. 15 and 16) indicate thsat C;, =-2a is a

useful approximation even for B tan 3 close to unity. Hence, on the
basls of the behavior of equations (15) for the steady case, it may be
expected that the results obtained in equations (13) for the unsteady

case are limited to values of B tan & 1less than about one-half. In

addition to Mach number and slenderness limitations, the frequency

mist be small so that the flow about the cone remains attached to the

surface.

CONCLUDING REMARKS

The linearized potential theory for supersonic flow about slender
bodies of revolution undergolng harmonic oscillastions has been developed
for the purpose of expanding the 1ift per unit length and the 1ift and
moment coefficients on an arbitrary shape to the fifth power of the fre-
quency. It is indicated that the expanslion obtained is limited to a
range of Mach numbers M and reduced frequencies k for which
—275-— § %. This parameter sets an upper limit to the frequency range
M -1
and a lower limit to the Mach number range over which the results may
be used.

\JN\O
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The theory has been applied to a rigid cone undergoing translation
and pitch, and the results are compared with slender-body theory for the
oscillating case and with Van Dyke's second-order theory for the steady
case. A comparison of the results obtained in the steady case with
experimental measurements indicates that the theory is limited to Mach

numbers M and cone semiapex angles 8 for which V M2 - 1 tan & 1is
less than about one-half. It has also been found that slender-body
theory is not a conslstently accurate approximation to potential theory.

Langley Research Center,
National Aeronasutics and Space Administration,
Langley Alr Force Base, Va., January 15, 1962.
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APPENDIX

n
DERIVATION OF THE QUANTITIES Ai ) ASSOCIATED WITH THE LIFT AND MOMENT

ON A CONE UNDERGOING RIGID PITCH AND TRANSLATION

For the case of a cone undergoing rigid pitch and translation, the
amplitude of the harmonic motion is Z =h + « (x - Xp) wvhere h and «

are the amplitudes of translation and pitch and Xo 1s the pltch-axis

(n)

location. The first step in obtaining is to evaluate the inte-
grals IIn(x) and II,'(x) with use of equations (8a) to (8f). To

this end, it is convenient to write the expression, U, %% + 1wz,
appearing in equation (6) in the form

U, .g% + dwZ = Um(w0 + wlx)

_ = h _ 21k wb = _
where Wo = o(l - 21kxg) + 21k B, wp = 2 X %0 = oo

and b 1is the length of the cone. The distribution function f(x)
appearing in the integrals II (x) and II,'(x) then becomes

a k=

£(x)

URZ(x) (o + Wix)

wa2 tan26<wo + Wlx)

It is now advantageous to split the distribution function f(x) 1into
two parts, f(x) = Tolx) + £1(x) where folx) = U, tan26W0x2 and

fl(x) = U, tan25w1x5, and to carry out the evaluation of the integrals

and the functions A(n)(x) for each part separately. The following
definitions are useful: n = B tand, Wy = U tan, W, = Uy tan,

Ig = cosh™t %, and I, = % 1l- ne.

N0
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Results for fo(x) = Wox

The integrals, II,(x) and II,'(x), are found to be:

IIy(x) = xﬁb(xl - nIO>

II4'(x) = MWl

IT(x) = -2W0x2n( -ql )

IL, '(x) = -HMxnI,

IIx(x) = xz%{&z [(1 +3 ”2)10 -2 ﬂ11:] - (1 +3 WE)IO +3 “Il}

II,'(x) = 2xﬁb[??(lo - onTy) - I+ qlé]

II5(x) = wox2{§?[}3qu + <% + % q2>1é] + 3nIg - (1 + 2n2)1;}

I5'(x) = xﬁo[%e(-3q10 + Il) + (5n10 - 311§l

IT,(x) = W&{yﬁ*[{ 2+ P+ (% -8 T])Il]
2o (-5 2 ]

i ;-T, b

23
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Substituting these values into equations (1la) to (11f) and
rearranging gives

)y = gop (B

where
(0)
Ay =P, (Ala)
A(()l) = B_12.<szl + P2> (Alb)
(2) M \@ 2P
Ay = (?) ( 5 + Ph) (Ale)
"
A(()3) = ;%(;%)Q(M P+ M2P6 + P7) (Ald)
(4) 4
Ay = (%) (ML‘P8 + Mu'P9 + Plo) (Ale)
B
(5) 1 ,M\% l
= 52.@5) (M6P11 +MP ) + M2P13 + Plu) (n1r)
and
PO = Il (A25-)
Pl’_‘%ll‘%’ﬂo (A2b)

\N\O
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P, = % Iy - % I, (A2¢c)
- 2
P3 =3I, - bneL, (A2a)
B, = -3nlg * 31°L; (Aze)
3 15 17
P5 = -(-é- n + T 713)10 + T TPI_']_ (A2f)
1
Pg = <3n * % n3)Io - 35 nely (A2g)
P7"("l+13:ﬂ5>10+1;7111 (A2h)
1 02,
Pg = ‘22 g - (-2- + 8 >Il (A21)
P1o = -122 lg - (% n2 +'5nu>11 (A2k)
1 151
P11 = -(—l;? w2 n5)Io + (- 5o+ n“) (a21)
45 225 5.2 _ M5 1\
e (29 B o G- By om
P "('2"13*'12715)1 +("“—Tl 31*5 nh) (A2n)
15 L4 16 Y 8 16

Py, = (12 0o + .% Tl5> (2 2 + I% le')Il (A20)
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The 1ift and moment are then found from equations (10) and (11):

(0) (1) (2) (3)
+ik%-—+k2A—g-—-ik5h_A‘;

L = -kW,qB tan & S(b),: =

(&) (5)
_k)+ &_ + j_k5 EA.;J
9 105

Mo = -bW,gb B tan & S(b)[:(% - }—CE-O-)AéO) + 1k<% - -i- io)Ac()l)

cefe Y L oofs Oz Y

Note that Wy 1s of the form, a + bk. If the preceding two

equations are multiplied out and rearranged in powers of k the
resulting expression is correct only to k.

Results for fy(x) = WixB

The integrals, II, (x) and II,'(x), are found to be:

= 2
IIo = 3Wix [-qxo + (%_ + % ,@)Il]

- n 1
IIo' = 6‘71}((- -2- IO + 5 Il)

II; = 3Wlx5[-(n + .32L 113)10 + -2- 'q‘?Il]

\N\O
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= 112 1 L 2 I
39 2
+(-Z—q +%n5)10 -<%+E—n )I]}
1 2 M2 I, + L4 —8 2)1 + 3nIy - (l + 21]2)Il}

I, = ﬁp?{«f*[(% + 582 q2>10 + ('2'6} - % n - —2 q5>11:]
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1
. Me[ls T - (3_11]§ BB ] R (- e 2o ad)n)

From equations (1lla) to (11f)

in which A](_n) is defined as A(()n) in equations (Al) with P,
replaced by Q,, and

Q = -3l + 3, (A38)
Q = -9nIp + (1 + 8712)11 (A3Db)

Q =3, - (1 + 203)1, (A3c)

Qs = (9n + B 31, - 22 (a3a)

Q = (-on - 3 1)1 + &L 721y (A3e)

Q = (3n + ”—5 n5)I + (—-9- n2 + 1611") (A3f)
& - (6n + 277,5)10 - (17712 + 16:1“)11 (A3g)
Q = -(371 + -Z- TP)IO + (% n2 + 2114)11 (A3n)

g = (&22 23+ 12 )10 - (E n2 + 202 n‘*)Il (A31)

N0
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Y = (‘*5713 + 15 n5)1 + (5 24 225 n“)

Qo = (2 w2 + 2 1)1 - (R 02+ F )

= (15,3435 .5 3 2,87 4, 18 6
IR C RS LRI CE- R e D

2 = (Eg— L %2 ”5)10 * (IBI n? - %{1 nt - h8n6)11

The 1ift and moment are

L—-2qu8tan6bs(b)[}( +:LkJé + k2 ; - ikD ke

I

(A33)

(A3k)

(A31)

(AZm)

(A3n)

(A30)
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